
Structuring and expanding queries in the

probabilistic model

OGAWA Yasushi, MANO Hiroko, NARITA Masumi, HONMA Sakiko

Software Research Center, RICOH Co., Ltd.

1-1-17 Koishikawa, Bunkyo-ku, Tokyo 112-0002, JAPAN

fyogawa,mano,narita,honmag@src.ricoh.co.jp

1 Introduction

This is our second participation in TREC, following the last year's ad-hoc, and �ve runs

were submitted for the main web track.

Our system is based on our Japanese text retrieval system [3], to which English

tokenizer/stemmer has been added to process English text. Our indexing system stores

term positions, thus providing proximity-based search, in which the user can specify the

distance between query terms.

What our system does is outlined as follows:

1. Query construction

The query constructor accepts each topic, extracts words in each of the appropriate

�elds and constructs a query to be supplied to the ranking system.

2. Initial retrieval

The constucted query is fed into the ranking system, which then assigns term

weights to query terms, scores each document and turns up a set of top-ranked

documents assumed to be relevant to the topic (pseudo-relevant documents).

3. Query expansion

The query expander collects and ranks the words in the pseudo-relevant documents

and the words ranked the highest are added to the original query, with the words

already in the query re-assigned new term weights.

4. Final retrieval

The ranking system performs �nal retrieval using the modi�ed query.

The basic features of the system are mostly the same as those implemented last year

for the TREC-8 ad-hoc track [2]. In what follows, we explain each of the steps in more

detail, both the features retained from last year and new enhancements we added this

year for the TREC-9 main web track.

1



2 Query construction

We have employed automatic query processing to construct queries using single-word and

phrasal search terms. In what follows, we describe how single and phrasal search terms

are created by linguistic methods and represented as a structured query.

2.1 Basic features

2.1.1 Single term selection

Natural language text in each topic is processed by our English tokenizer and stemmer to

output stemmed word tokens.1 From the stemmed tokens, the query constructor selects

single-word search terms by eliminating stopwords. We have used two kinds of stopword

lists, the Fox's [1] word list for the <title> �eld and its augmented word list we created

for the <desc> �eld.

2.1.2 Phrasal term selection

Noun phrases consisting of two or more single words are extracted for use in search terms.

Syntactic phrases are recognized in the natural language text by applying the syntactic

chunker LT CHUNK developed at the Edinburgh Language Technology Group. Each

noun phrase is then tokenized and stemmed. Phrases consisting of three or more single

words are decomposed into sets of word pairs. For example, the noun phrase \industrial

waste disposal" is decomposed to derive three word pairs \industrial waste," \waste

disposal," and \industrial disposal."

2.1.3 Query representation

Single and phrasal search terms are combined into a query using syntax of our query

language. Phrasal terms are represented using a proximity operator #WINDOW. For

example, the phrasal search term \waste disposal" is represented as:

#WINDOW[1,1,o](waste,disposal)

where #WINDOW[1,1,o] speci�es that the two component words are to be found adjacent

and in the described order in a document. To deal with possible changes in word order

and the number of intervening words between the component words of a phrasal term, we

prepared a variant of the basic query representation, #WINDOW[2,num,u](A,B). The

variant allows the words A and B to co-occur not in adjacency but within a speci�ed

number of words (num) of each other, in any order. We have also introduced a scaling

operator #SCALE to phrasal term representation to adjust its term weight.

To sum, our sample queries are expressed as follows:

A query from the <title> and <desc> fields:

#OR(killer,bee,attack,human,africanise,

#SCALE[0.4](#WINDOW[1,1,o](killer,bee)),

#SCALE[0.25](#WINDOW[2,50,u](killer,bee)))

1Text was used as is, with no spelling-correction applied.

2



2.2 Multiple �elds

In TREC-8, the �elds from which a word or phrase was extracted were not taken into

account when a query is constructed. In TREC-9, when words are repeated across multi-

ple �elds in the topic, we increase their term weights to re
ect their relative importance.

To adjust the weights of these repeated words, the scaling operator #SCALE is applied

and optimized to maximize the retrieval e�ectiveness.

Words extracted from the topic:

<title>: lava, lamp

<desc>: origin, operation, lava, lamp

Query:

#OR(origin,operation,#SCALE[3.0](lava),#SCALE[3.0](lamp))

3 Initial retrieval

For each query constructed, the ranking system ranks the documents in the target doc-

ument collection and retrieves top-ranked documents. To rank documents, the system

uses term weighting and document scoring formulae similar to Okapi's [4] but with some

modi�cations.

The weight of each term is calculated by using the formula

wt = log

�
k
0

4
�
N

n
+ 1

�
;

where N is the number of documents in the collection, n is the number of the documents

in which the term occurs and k0
4
is a parameter, with 0 � k0

4
.

Note that unlike Okaipi's, with our formula, the term weights never get negative. By

keeping the term weights positive, the quality of retrieval is maintained even in the worst

case.

With each term weighted according to the above formula, the ranking score for each

document is calculated using the formula

sd;q =
X
t2q

wt

log (k0
4
�N + 1)

�
ft;d

k1((1� b) + b
ld
lave

) + ft;d

where ft;d is the within-document frequency of the term, ld is the document length, lave
is the average document length, k1 and b are parameters.

4 Query expansion

4.1 Basic features

The query expander, regarding the top-ranked documents as relevant documents, collects

all single terms except stopwords in them and ranks the terms according to its Term

Selection Value (TSV) while reweighting query terms, using formulae similar to Okapi's.

3



For each term collected, a new weight based on the feedback from the retrieved

documents is assigned. The term reweighting formula re
ects term weighting during

initial retrieval mentioned above.

wt =
k5

k5 +
p
R
log

�
k
0

4

N

N � n
+

n

N � n

�
+

p
R

k5 +
p
R
log

r + 0:5

R� r + 0:5

�
k6

k6 +
p
S
log

n

N � n
�

p
S

k6 +
p
S
log

s+ 0:5

S � s+ 0:5
;

where R is the number of relevant documents, r is the number of relevant documents

containing the term, S is the number of non-relevant documents, s is the number of

non-relevant documents containing the term, and k5 and k6 are parameters. (S was set

to 0 in the experiment.)

The query expander then calculates TSV for each reweighted term to select the terms

to augument the query by using the formula

TSV =

 X
d2R

ft;d

k1((1� b) + b
ld
lave

) + ft;d

=R� � �
X
d2S

ft;d

k1((1� b) + b
ld
lave

) + ft;d

=S

!
�wt

where � is a parameter.

Note the TSV formula has been changed from Okapi's to incorporate the within-

document frequency.

The top-ranked single terms are then added to the original query with their respective

term weights. The single terms and phrasal terms origianlly included in the query are

also given re-assigned term weights, multiplied with a bonus factor.

4.2 Duplicates-resistant term selection

Compared with the ad-hoc track document collection we used last year, the web track

document collection used this year seemed to contain far more documents that are exact

or partial copies of some other documents. Although their presence in the retrieved

documents may not a�ect retrieval e�ectiveness as measured by the current evaluation

measures [6], it can degrade performance when the retrieved documents are used for

automatic query expansion since this could give terms that appear in duplicates or near-

duplicates an unjusti�ably higher document frequency, thus boosting the likelihood of

being selected.

To alleviate ill e�ects of duplicates and near-duplicates in the documents retrieved in

initial retrieval, two work-arounds are devised:

1. During initial retrieval, eliminate documents scored the same as previously retrieved

documents. If two documents have the same score, it is highly likely that they are

exact copies of each other.

2. When selecting terms for expansion, for terms with a low document frequency

among the retrieved documents, terms that appear in the same set of documents as

those from which previously selected terms were drawn are excluded. These terms

4



are unlikely to co-occur in the same set of documents, and if they do, that may

indicate the set shares the same piece of text.

4.3 Phrasal term addition

This year, we extend the idea of using phrasal terms from only in query generation to

both in query generation and expansion. That is, when expanding queries, not only

single words but also pairs of contiguous words in top-ranked documents are collected,

evaluated and selected for use as expansion terms. The goal was to �nd a way to select

the right pairs of words, with the right balance of weights, while keeping the expansion

process simple and quick with minimal overhead.

In the experiments, we tested the same weighting/selection technique as used for

single words for its applicability to word pairs and found it promising when the following

adjustments were made:

� Set �rst the minimum Term Selection Value, which is set several times as high as

that for single words.

� Give more importance to the document frequency in top-ranked documents com-

pared with that in the document collection, when assigning a weight.

� Adjust the weights for word pairs that contain the same single words as those

selected and those supplied in the original query.

5 Final retrieval

The expanded-and-reweighted query is sent to the ranking system and documents are

retrieved as �nal result. Document ranking is done just as in initial retrieval, except that

the term weights are supplied in the query.

6 Results

We tuned up the formulae using the WT2g document collection and mainly queries

generated from the TREC-8 topics. Parameter values were chosen for each of the four

categories below and are listed in Table 1 { 3.

� Queries using only <title> and queries using <title> and <desc>

� Queries using no phrasal search terms and queries using phrasal search terms

Note that in Table 1 and Table 2, we chose di�erent sets of parameter values for

the same retrieval parameters. This is because, for retrieval in a run with no query

expansion, we wanted parameter values that would maximize average precision, whereas

for initial retrieval for a run with query expansion, we looked for parameter values that

would maximize precision at ten retrieved documents.

5



Table 1: Parameters for runs without expansion

title only title + desc

no phrases phrases no phrases phrases

k1 0.75 0.5 1.0 0.75

b 0.25 0.25 0.25 0.25

k
0

4
0.5 0.5 0.5 0.5

Scale for multi-�eld query terms { { 3.0 3.0

num in #WINDOW[2,num,u] { 50 { 10

Scale for #WINDOW[1,1,o] { 0.25 { 0.4

Scale for #WINDOW[2,num,u] { 0.1 { 0.25

Table 2: Parameters for runs with expansion (initial retrieval)

title only title + desc

no phrases phrases no phrases phrases

k1 1.5 0.75 1.5 0.75

b 0.25 0.25 0.25 0.25

k0
4

0.5 0.1 0.5 0.5

Scale for multi-�eld query terms { { 2.75 3.0

num in #WINDOW[2,num,u] { 50 { 10

Scale for #WINDOW[1,1,o] { 0.25 { 0.2

Scale for #WINDOW[2,num,u] { 0.1 { 0.1

6



Table 3: Parameters for runs with expansion (�nal retrieval)

title only title + desc

no phrases phrases no phrases phrases

Maximum number of documents used for expansion 10 10 10 10

k1 0.75 0.75 1.0 0.75

b 0.25 0.25 0.25 0.25

k0
4

0.01 0.01 0.01 0.01

k5 for single expansion terms 6.0 6.0 6.0 6.0

k5 for phrasal expansion terms 2.0 3.0 3.0 3.0

Scale for multi-�eld query terms { { 3.0 3.0

num in #WINDOW[2,num,u] { 50 { 10

Scale for #WINDOW[1,1,o] { 0.4 { 0.3

Scale for #WINDOW[2,num,u] { 0.25 { 0.2

Maximum number of terms to be added 25 25 30 30

Minimum number of terms to be added 10 10 10 10

Minimum r for term to qualify 2 2 2 2

Maximum r for near-duplicate checking 3 3 3 3

Scale for phrasal expansion terms 0.3 0.2 0.3 0.3

Minimum TSV factor for phrasal expansion terms 5 3.3 2.5 2.5

Bonus factor for query terms 10.0 10.0 7.0 5.0

Table 4: Average precision for TREC-8 topics

title only title + desc

no phrases phrases no phrases phrases

baseline 0.3184 0.3247 0.3017 0.3113

above + multi-�eld scaling { { 0.3321 0.3420

above + expansion 0.3493 0.3536 0.3637 0.3703

above + phrasal expansion terms 0.3538 0.3533 0.3671 0.3716

The experimental runs using the above parameters, the TREC-8 topics and the WT2g

document collection resulted in the following average precision measurements (Table 4).

The table shows improvement in performance as more features are added.

Using the same conditions as above, the results for the TREC-9 topics and the WT10g

document colletion are shown in Table 5. The runs submitted are indicated by asterisks.2

(The numbers in the parentheses below the table are from the original submissions, which

contained incorrect results due to program bugs. The numbers in the table were obtained

after bug �xes and a minor modi�cation in which the minimum number of words to be

added was lowered to 0.)

2ric9dpxL is a linear combination of ric9dpx and HITS [5]. This run is yet to be analyzed.

7



Table 5: Average precision for TREC-9 topics

title only title + desc

no phrases phrases no phrases phrases

baseline 0.2025 0.2073 0.2135 0.2407

above + multi-�eld scaling { { 0.2489 0.2608�3

above + expansion 0.1740 0.2021 0.2212�2 0.2427

above + phrasal expansion terms 0.1788 0.2034�1 0.2211 0.2411�4

�1: ric9tpx (0.1787), �2 ric9dsx (0.2201), �3: ric9dpn (0.2616), �4: ric9dpx (0.2267)

The results show that use of phrasal search terms and multi-�eld scaling worked

well in TREC-9, as in TREC-8 above. However, unlike in TREC-8, we see that query

expansion, whether with phrasal expansion terms or not, made unexpectedly negative

e�ect in TREC-9. Why the di�erence?

One thing we noticed is the di�erence in the size of the target collection from which

documents were retrieved. TheWT10g document collection used for the TREC-9 submis-

sion had more than six times the number of documents in the WT2g document collection

used for the TREC-8 experiments. The largeness of the WT10g collection led to rare

words getting term weights that were extremely high because of the way we calculated

the term weights, thus making it easier for these words to be selected as expansion terms.

Another di�erence is in the number of relevant documents for each of the topics.

Although on the average, the number of relevant documents in TREC-9 is greater than

that in TREC-8, there are more topics having a very few relevant documents in TREC-9

than in TREC-8; topics having fewer than 10 relevant documents add up to 11 in TREC-

9, as opposed to only 2 in TREC-8. The system, on the other hand, retrieved just as

many documents for these topics despite this, turning up fewer relevant documents in

the top-ranked documents in initial retrieval before expansion. For example, P@10, or

precision after 10 documents are retrieved, is 0.3520 in TREC-9, compared to 0.5000 in

TREC-8, in runs in \title + desc, phrases." What this means is that the query expander

had to select expansion terms from mostly non-relevant documents, which in addition

may contain a near-duplicate or two skewing the term selection statistics even further in

the wrong direction.

In the follow-up experiments conducted after the submission, we tested an alternative

approach where expansion terms were selected without regard to their term weights so

that their in
uence on term selection would be eliminated. The average precision we

obtained from this approach in a run in \title + desc, phrases," was 0.2629, showing an

8% improvement from the submitted run.

References

[1] C. Fox. A stop list for general text. ACM SIGIR Forum, Vol. 24, No. 2, pp. 19{35,

1991.

8



[2] Y. Ogawa, H. Mano, M. Narita, and S. Honma. Structuring and expanding queries in

the probabilistic model. In The Eighth Text REtrieval Conference (TREC-8), 2000.

[3] Y. Ogawa and T. Matsuda. An e�cient document retrieval method using n-gram

indexing (in Japanese). Transactions of IEICE, Vol. J82-D-I, No. 1, pp. 121{129,

1999.

[4] S.E. Robertson and S. Walker. On relevance weights with little relevance information.

In Proc. of 20th ACM SIGIR Conf., pp. 16{24, 1997.

[5] M. Toyoda and M. Kitsuregawa. Finding related communities on the Web. In Poster

in WWW-9 Conf., 1999.

[6] D. Hawking, E. Voorhees, N. Craswell, and P. Bailey. Overview of the TREC-8 Web

Track. In The Eighth Text REtrieval Conference (TREC-8), 2000.

9


